Commit 1a691aa7 authored by Jefferson Stafusa E. Portela's avatar Jefferson Stafusa E. Portela
Browse files

Add Exercise 1 of Part II. Some cleanup.

parent 83e5406c
This directory contains a copy of ALF with the necessary modifications for solving Exercise 1 - Dimensional crossover - of Part II from the ALF Tutorial (ALF 2.0)
This directory contains:
- a copy of ALF with the necessary modifications for solving Exercise 1 - Dimensional crossover - of Part II from the ALF Tutorial (ALF 2.0)
- the corresponding Start folder
- reference data and plot (ladder.data, ladder.pdf, the latter generated by the gnuplot script ladder.plt)
declare -i n
declare -i n1
n1=`ls confout_* | wc -l`
let n=0
let n1=n1-1
while [ $n -le $n1 ];
do
export file_out="confout_"$n
export file_in="confin_"$n
echo $file_out $file_in
mv $file_out $file_in
let n=n+1
done
......@@ -3,8 +3,8 @@
!---------------------------------------------------------------------------------------
&VAR_lattice !! Parameters defining the specific lattice and base model
L1 = 4 ! Length in direction a_1
L2 = 4 ! Length in direction a_2
L1 = 14 ! Length in direction a_1
L2 = 2 ! Length in direction a_2
Lattice_type = "Square" ! Sets a_1 = (1,0), a_2=(0,1), Norb=1, N_coord=2
Model = "Hubbard_Plain_Vanilla" ! Sets the Hubbard model, to be specified in &VAR_Hubbard
/
......@@ -12,12 +12,12 @@ Model = "Hubbard_Plain_Vanilla" ! Sets the Hubbard model, to be specif
&VAR_QMC !! Variables for the QMC run
Nwrap = 10 ! Stabilization. Green functions will be computed from
! scratch after each time interval Nwrap*Dtau
NSweep = 40 ! Number of sweeps
NSweep = 20 ! Number of sweeps
NBin = 10 ! Number of bins
Ltau = 1 ! 1 to calculate time-displaced Green functions; 0 otherwise
LOBS_ST = 0 ! Start measurements at time slice LOBS_ST
LOBS_EN = 0 ! End measurements at time slice LOBS_EN
CPU_MAX = 0.05 ! Code stops after CPU_MAX hours, if 0 or not
CPU_MAX = 0.1 ! Code stops after CPU_MAX hours, if 0 or not
! specified, the code stops after Nbin bins
Propose_S0 = .F. ! Proposes single spin flip moves with probability exp(-S0)
Global_moves = .F. ! Allows for global moves in space and time
......@@ -70,11 +70,12 @@ Tolerance = 0.1d0 ! Data points for which the relative error exceeds t
&VAR_Hubbard_Plain_Vanilla !! Variables for the specific model
ham_T = 1.d0 ! Hopping parameter
ham_Ty = 1.d0 ! Hopping parameter
ham_chem = 0.d0 ! Chemical potential
ham_U = 4.d0 ! Hubbard interaction
Dtau = 0.1d0 ! Thereby Ltrot=Beta/dtau
Beta = 1.d0 ! Inverse temperature
Projector = .T. ! Whether the projective algorithm is used
Beta = 10.d0 ! Inverse temperature
Projector = .F. ! Whether the projective algorithm is used
Theta = 10.d0 ! Projection parameter
Symm = .T. ! Whether symmetrization takes place
/
......
21 132 1.0000000000000000 1
0.0000000 0.00000000 0.00000000
0.0500000 0.00000000 0.00000000
0.1000000 0.00000000 0.00000000
0.1500000 0.00000000 0.00000000
0.2000000 0.00000000 0.00000000
0.2500000 0.00000000 0.00000000
0.3000000 0.00000000 0.00000000
0.3500000 0.00000000 0.00000000
0.4000000 0.00000000 0.00000000
0.4500000 0.00000000 0.00000000
0.5000000 0.00000000 0.00000000
0.5500000 0.00000000 0.00000000
0.6000000 0.00000000 0.00000000
0.6500000 0.00000000 0.00000000
0.7000000 0.00000000 0.00000000
0.7500000 0.00000000 0.00000000
0.8000000 0.00000000 0.00000000
0.8500000 0.00000000 0.00000000
0.9000000 0.00000000 0.00000000
0.9500000 0.00000000 0.00000000
1.0000000 0.00000000 0.00000000
21 132 1.0000000000000000 1
0.0000000 0.16044016 0.00177906
0.0500000 0.13090337 0.00167092
0.1000000 0.10700451 0.00157882
0.1500000 0.08775838 0.00148568
0.2000000 0.07224436 0.00138929
0.2500000 0.05959371 0.00130403
0.3000000 0.04920310 0.00121322
0.3500000 0.04063661 0.00111983
0.4000000 0.03356015 0.00101415
0.4500000 0.02781067 0.00087961
0.5000000 0.02305742 0.00076459
0.5500000 0.01902943 0.00067924
0.6000000 0.01569429 0.00062623
0.6500000 0.01301808 0.00057833
0.7000000 0.01093427 0.00051519
0.7500000 0.00935233 0.00045346
0.8000000 0.00804201 0.00041604
0.8500000 0.00683394 0.00039108
0.9000000 0.00573955 0.00036866
0.9500000 0.00481887 0.00034856
1.0000000 0.00407742 0.00033930
21 132 1.0000000000000000 1
0.0000000 0.23581200 0.00223492
0.0500000 0.17861179 0.00186257
0.1000000 0.13535332 0.00161874
0.1500000 0.10290996 0.00145086
0.2000000 0.07822951 0.00150291
0.2500000 0.05937342 0.00170102
0.3000000 0.04530755 0.00171148
0.3500000 0.03457652 0.00164824
0.4000000 0.02640375 0.00153770
0.4500000 0.02033643 0.00137663
0.5000000 0.01584029 0.00116463
0.5500000 0.01251274 0.00090187
0.6000000 0.00999377 0.00073243
0.6500000 0.00782995 0.00065870
0.7000000 0.00587523 0.00063375
0.7500000 0.00446165 0.00061576
0.8000000 0.00356009 0.00057381
0.8500000 0.00282960 0.00055296
0.9000000 0.00219378 0.00053354
0.9500000 0.00160087 0.00052654
1.0000000 0.00106290 0.00056119
21 132 1.0000000000000000 1
0.0000000 0.16190793 0.00190789
0.0500000 0.13216367 0.00170253
0.1000000 0.10851843 0.00149775
0.1500000 0.08943921 0.00134100
0.2000000 0.07373923 0.00123830
0.2500000 0.06073900 0.00115344
0.3000000 0.05003568 0.00107950
0.3500000 0.04126279 0.00101524
0.4000000 0.03405874 0.00093885
0.4500000 0.02817171 0.00085787
0.5000000 0.02337038 0.00078070
0.5500000 0.01937016 0.00071214
0.6000000 0.01602851 0.00065439
0.6500000 0.01336585 0.00059614
0.7000000 0.01122677 0.00054193
0.7500000 0.00945540 0.00049709
0.8000000 0.00801215 0.00045417
0.8500000 0.00679410 0.00040710
0.9000000 0.00574550 0.00036400
0.9500000 0.00489051 0.00033461
1.0000000 0.00420975 0.00031619
21 132 1.0000000000000000 1
0.0000000 0.23818074 0.00135274
0.0500000 0.18069137 0.00122974
0.1000000 0.13771748 0.00109843
0.1500000 0.10551809 0.00097998
0.2000000 0.08100219 0.00092984
0.2500000 0.06216535 0.00093124
0.3000000 0.04778822 0.00089888
0.3500000 0.03683826 0.00085176
0.4000000 0.02846525 0.00078289
0.4500000 0.02206788 0.00069901
0.5000000 0.01705494 0.00065386
0.5500000 0.01308268 0.00063401
0.6000000 0.01005587 0.00061429
0.6500000 0.00777002 0.00056504
0.7000000 0.00590172 0.00051397
0.7500000 0.00437498 0.00047905
0.8000000 0.00329820 0.00041734
0.8500000 0.00247207 0.00038016
0.9000000 0.00176722 0.00038430
0.9500000 0.00125278 0.00038460
1.0000000 0.00089928 0.00036926
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment