@@ -173,7 +173,7 @@ The ALF package provides a general code for auxiliary-field Quantum Monte Carlo
\item[Part II.] The second part is independent of the first and aimed at more advanced users who want to simulate their own systems. It guides the user on how to modify the package's Fortran source code and presents the resources implemented to facilitate this task.
\end{description}
This document is intended to be self-contained, but the interested reader should check \href{https://git.physik.uni-wuerzburg.de/ALF/ALF/-/blob/master/Documentation/doc.pdf}{ALF's documentation}, which contains a thorough, systematic description of the package.
This document is intended to be self-contained, but the interested reader should check \href{https://git.physik.uni-wuerzburg.de/ALF/ALF/-/blob/master/Documentation/doc.pdf}{ALF's documentation}, which contains a thorough, systematic description of the package in its 2.0 (beta) version.
% Old link: \href{https://git.physik.uni-wuerzburg.de/ALF/ALF_code/blob/master/Documentation/ALF_v1.0.pdf}{ALF's documentation}
@@ -137,14 +137,14 @@ Run /home/stafusa/Programs/ALF/Prog/Hubbard.out
\begin{tcolorbox}[breakable, size=fbox, boxrule=1pt, pad at break*=1mm,colback=cellbackground, colframe=cellborder]
\prompt{In}{incolor}{6}{\boxspacing}
\begin{Verbatim}[commandchars=\\\{\}]
\PY{o}{\PYZpc{}\PYZpc{}capture}
\PY{n}{ener}\PY{o}{=}\PY{n}{np}\PY{o}{.}\PY{n}{empty}\PY{p}{(}\PY{p}{(}\PY{n+nb}{len}\PY{p}{(}\PY{n}{sims}\PY{p}{)}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{)}\PY{p}{)}\PY{c+c1}{\PYZsh{} Matrix for storing energy values}
\PY{n}{thetas}\PY{o}{=}\PY{n}{np}\PY{o}{.}\PY{n}{empty}\PY{p}{(}\PY{p}{(}\PY{n+nb}{len}\PY{p}{(}\PY{n}{sims}\PY{p}{)}\PY{p}{,}\PY{p}{)}\PY{p}{)}\PY{c+c1}{\PYZsh{} Matrix for Thetas values, for plotting}
\PY{n}{thetas}\PY{p}{[}\PY{n}{i}\PY{p}{]}\PY{o}{=}\PY{n}{sim}\PY{o}{.}\PY{n}{sim\PYZus{}dict}\PY{p}{[}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{Theta}\PY{l+s+s1}{\PYZsq{}}\PY{p}{]}\PY{c+c1}{\PYZsh{} Store Theta value}
\PY{n}{ener}\PY{p}{[}\PY{n}{i}\PY{p}{]}\PY{o}{=}\PY{n}{sim}\PY{o}{.}\PY{n}{get\PYZus{}obs}\PY{p}{(}\PY{p}{[}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{Ener\PYZus{}scalJ}\PY{l+s+s1}{\PYZsq{}}\PY{p}{]}\PY{p}{)}\PY{p}{[}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{Ener\PYZus{}scalJ}\PY{l+s+s1}{\PYZsq{}}\PY{p}{]}\PY{p}{[}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{obs}\PY{l+s+s1}{\PYZsq{}}\PY{p}{]}\PY{c+c1}{\PYZsh{} Store internal energy}
\PY{o}{\PYZpc{}\PYZpc{}}\PY{k}{capture}
ener = np.empty((len(sims), 2)) \PYZsh{} Matrix for storing energy values
thetas = np.empty((len(sims),)) \PYZsh{} Matrix for Thetas values, for plotting
for i, sim in enumerate(sims):
print(sim.sim\PYZus{}dir)\PYZsh{} Directory containing the simulation output
sim.analysis()\PYZsh{} Perform default analysis
thetas[i] = sim.sim\PYZus{}dict[\PYZsq{}Theta\PYZsq{}]\PYZsh{} Store Theta value
ener[i] = sim.get\PYZus{}obs([\PYZsq{}Ener\PYZus{}scalJ\PYZsq{}])[\PYZsq{}Ener\PYZus{}scalJ\PYZsq{}][\PYZsq{}obs\PYZsq{}] \PYZsh{} Store internal energy
\end{Verbatim}
\end{tcolorbox}
...
...
@@ -185,7 +185,7 @@ For Theta values [ 5. 10. 20.] the measured energies are:
@@ -505,14 +505,14 @@ Run /home/stafusa/Programs/ALF/Prog/Hubbard.out
\begin{tcolorbox}[breakable, size=fbox, boxrule=1pt, pad at break*=1mm,colback=cellbackground, colframe=cellborder]
\prompt{In}{incolor}{6}{\boxspacing}
\begin{Verbatim}[commandchars=\\\{\}]
\PY{o}{\PYZpc{}\PYZpc{}capture}
\PY{n}{ener}\PY{o}{=}\PY{n}{np}\PY{o}{.}\PY{n}{empty}\PY{p}{(}\PY{p}{(}\PY{n+nb}{len}\PY{p}{(}\PY{n}{sims}\PY{p}{)}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{)}\PY{p}{)}\PY{c+c1}{\PYZsh{} Matrix for storing energy values}
\PY{n}{thetas}\PY{o}{=}\PY{n}{np}\PY{o}{.}\PY{n}{empty}\PY{p}{(}\PY{p}{(}\PY{n+nb}{len}\PY{p}{(}\PY{n}{sims}\PY{p}{)}\PY{p}{,}\PY{p}{)}\PY{p}{)}\PY{c+c1}{\PYZsh{} Matrix for Thetas values, for plotting}
\PY{n}{thetas}\PY{p}{[}\PY{n}{i}\PY{p}{]}\PY{o}{=}\PY{n}{sim}\PY{o}{.}\PY{n}{sim\PYZus{}dict}\PY{p}{[}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{Theta}\PY{l+s+s1}{\PYZsq{}}\PY{p}{]}\PY{c+c1}{\PYZsh{} Store Theta value}
\PY{n}{ener}\PY{p}{[}\PY{n}{i}\PY{p}{]}\PY{o}{=}\PY{n}{sim}\PY{o}{.}\PY{n}{get\PYZus{}obs}\PY{p}{(}\PY{p}{[}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{Ener\PYZus{}scalJ}\PY{l+s+s1}{\PYZsq{}}\PY{p}{]}\PY{p}{)}\PY{p}{[}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{Ener\PYZus{}scalJ}\PY{l+s+s1}{\PYZsq{}}\PY{p}{]}\PY{p}{[}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{obs}\PY{l+s+s1}{\PYZsq{}}\PY{p}{]}\PY{c+c1}{\PYZsh{} Store internal energy}
\PY{o}{\PYZpc{}\PYZpc{}}\PY{k}{capture}
ener = np.empty((len(sims), 2)) \PYZsh{} Matrix for storing energy values
thetas = np.empty((len(sims),)) \PYZsh{} Matrix for Thetas values, for plotting
for i, sim in enumerate(sims):
print(sim.sim\PYZus{}dir)\PYZsh{} Directory containing the simulation output
sim.analysis()\PYZsh{} Perform default analysis
thetas[i] = sim.sim\PYZus{}dict[\PYZsq{}Theta\PYZsq{}]\PYZsh{} Store Theta value
ener[i] = sim.get\PYZus{}obs([\PYZsq{}Ener\PYZus{}scalJ\PYZsq{}])[\PYZsq{}Ener\PYZus{}scalJ\PYZsq{}][\PYZsq{}obs\PYZsq{}] \PYZsh{} Store internal energy
\end{Verbatim}
\end{tcolorbox}
...
...
@@ -553,7 +553,7 @@ For Theta values [ 5. 10. 20.] the measured energies are: