Commit 8edecdf1 authored by Jefferson Stafusa E. Portela's avatar Jefferson Stafusa E. Portela
Browse files

Improved but not final Exercise 2 of part 2 (tv model).

parent a98834b5
!=======================================================================================
! Input variables for a general ALF run
!---------------------------------------------------------------------------------------
&VAR_lattice !! Parameters defining the specific lattice and base model
L1 = 28 ! Length in direction a_1
L2 = 1 ! Length in direction a_2
Lattice_type = "Square" ! Sets a_1 = (1,0), a_2=(0,1), Norb=1, N_coord=2
!!!!!! Modifications for Exercise 2
!Model = "Hubbard" ! Sets the Hubbard model, to be specified in &VAR_Hubbard
Model = "Hubbard_Plain_Vanilla" ! Sets (after modified) the t-V model, to be specified in &VAR_t_V
!!!!!!
/
&VAR_Model_Generic !! Common model parameters
Checkerboard = .T. ! Whether checkerboard decomposition is used
Symm = .T. ! Whether symmetrization takes place
N_SUN = 2 ! Number of colors
N_FL = 1 ! Number of flavors
Phi_X = 0.d0 ! Twist along the L_1 direction, in units of the flux quanta
Phi_Y = 0.d0 ! Twist along the L_2 direction, in units of the flux quanta
Bulk = .T. ! Twist as a vector potential (.T.), or at the boundary (.F.)
N_Phi = 0 ! Total number of flux quanta traversing the lattice
Dtau = 0.1d0 ! Thereby Ltrot=Beta/dtau
Beta = 5.d0 ! Inverse temperature
Projector = .F. ! Whether the projective algorithm is used
Theta = 10.d0 ! Projection parameter
/
&VAR_QMC !! Variables for the QMC run
Nwrap = 10 ! Stabilization. Green functions will be computed from
! scratch after each time interval Nwrap*Dtau
NSweep = 20 ! Number of sweeps
NBin = 5 ! Number of bins
Ltau = 1 ! 1 to calculate time-displaced Green functions; 0 otherwise
LOBS_ST = 0 ! Start measurements at time slice LOBS_ST
LOBS_EN = 0 ! End measurements at time slice LOBS_EN
CPU_MAX = 0.05 ! Code stops after CPU_MAX hours, if 0 or not
! specified, the code stops after Nbin bins
Propose_S0 = .F. ! Proposes single spin flip moves with probability exp(-S0)
Global_moves = .F. ! Allows for global moves in space and time
N_Global = 1 ! Number of global moves per sweep
Global_tau_moves = .F. ! Allows for global moves on a single time slice.
N_Global_tau = 1 ! Number of global moves that will be carried out on a
! single time slice
Nt_sequential_start = 0 ! One can combine sequential and global moves on a time slice
Nt_sequential_end = -1 ! The program then carries out sequential local moves in the
! range [Nt_sequential_start, Nt_sequential_end] followed by
! N_Global_tau global moves
/
&VAR_errors !! Variables for analysis programs
n_skip = 1 ! Number of bins that to be skipped.
N_rebin = 1 ! Rebinning
N_Cov = 0 ! If set to 1 covariance computed for non-equal-time
! correlation functions
/
&VAR_TEMP !! Variables for parallel tempering
N_exchange_steps = 6 ! Number of exchange moves #[see Eq.~\eqref{eq:exchangestep}]#
N_Tempering_frequency = 10 ! The frequency in units of sweeps at which the
! exchange moves are carried out
mpi_per_parameter_set = 2 ! Number of mpi-processes per parameter set
Tempering_calc_det = .T. ! Specifies whether the fermion weight has to be taken
! into account while tempering. The default is .true.,
! and it can be set to .F. if the parameters that
! get varied only enter the Ising action S_0
/
&VAR_Max_Stoch !! Variables for Stochastic Maximum entropy
Ngamma = 400 ! Number of Dirac delta-functions for parametrization
Om_st = -10.d0 ! Frequency range lower bound
Om_en = 10.d0 ! Frequency range upper bound
NDis = 2000 ! Number of boxes for histogram
Nbins = 250 ! Number of bins for Monte Carlo
Nsweeps = 70 ! Number of sweeps per bin
NWarm = 20 ! The Nwarm first bins will be ommitted
N_alpha = 14 ! Number of temperatures
alpha_st = 1.d0 ! Smallest inverse temperature increment for inverse
R = 1.2d0 ! temperature (see above)
Channel = "P" ! Options: zero temperature (T0), and finite temperature
! particle (P), particle-hole (PH), or particle-particle (PP)
Checkpoint = .F. ! Whether to produce dump files, allowing the simulation
! to be resumed later on
Tolerance = 0.1d0 ! Data points for which the relative error exceeds the
! tolerance threshold will be omitted.
/
&VAR_Hubbard !! Variables for the specific model
Mz = .T. ! When true, sets the M_z-Hubbard model: Nf=2, N_sun=1, HS field
! couples to the z-component of magnetization; otherwise, HS field
! couples to the density
ham_T = 1.d0 ! Hopping parameter
ham_chem = 0.d0 ! Chemical potential
ham_U = 4.d0 ! Hubbard interaction
ham_T2 = 1.d0 ! For bilayer systems
ham_U2 = 4.d0 ! For bilayer systems
ham_Tperp = 1.d0 ! For bilayer systems
/
!!!!!! Modifications for Exercise 2
!&VAR_Hubbard_Plain_Vanilla !! Variables for the specific model
&VAR_t_V !! Variables for the specific model
ham_T = 1.d0 ! Hopping parameter
ham_chem = 0.d0 ! Chemical potential
!ham_U = 4.d0 ! Hubbard interaction
Ham_Vint = 2.5d0 ! Hubbard interaction
!!!!!!
Dtau = 0.1d0 ! Thereby Ltrot=Beta/dtau
Beta = 20.d0 ! Inverse temperature
Projector = .F. ! Whether the projective algorithm is used
Theta = 10.d0 ! Projection parameter
Symm = .F. ! Whether symmetrization takes place
/
&VAR_tV !! Variables for the t-V class
ham_T = 1.d0 ! Hopping parameter
ham_chem = 0.d0 ! Chemical potential
ham_V = 4.d0 ! Hubbard interaction
ham_T2 = 1.d0 ! For bilayer systems
ham_V2 = 4.d0 ! For bilayer systems
ham_Tperp = 1.d0 ! For bilayer systems
ham_Vperp = 1.d0 ! For bilayer systems
/
&VAR_Kondo !! Variables for the Kondo class
ham_T = 1.d0 ! Hopping parameter
ham_chem = 0.d0 ! Chemical potential
ham_Uc = 0.d0 ! Hubbard interaction on c-orbitals Uc
ham_Uf = 2.d0 ! Hubbard interaction on f-orbials Uf
ham_JK = 2.d0 ! Kondo Coupling J
/
&VAR_LRC !! Variables for the Long Range Coulomb class
ham_T = 1.0 ! Specifies the hopping and chemical potential
ham_T2 = 1.0 ! For bilayer systems
ham_Tperp = 1.0 ! For bilayer systems
ham_chem = 1.0 ! Chemical potential
ham_U = 4.0 ! On-site interaction
ham_alpha = 0.1 ! Coulomb tail magnitude
Percent_change = 0.1 ! Parameter P
/
&VAR_Z2_Matter !! Variables for the Z_2 class
ham_T = 1.0 ! Hopping for fermions
ham_TZ2 = 1.0 ! Hopping for orthogonal fermions
ham_chem = 0.0 ! Chemical potential for fermions
ham_U = 0.0 ! Hubbard for fermions
Ham_J = 1.0 ! Hopping Z2 matter fields
Ham_K = 1.0 ! Plaquette term for gauge fields
Ham_h = 1.0 ! sigma^x-term for matter
Ham_g = 1.0 ! tau^x-term for gauge
Dtau = 0.1d0 ! Thereby Ltrot=Beta/dtau
Beta = 10.d0 ! Inverse temperature
/
! slash terminates namelist statement - DO NOT REMOVE
!=======================================================================================
! Input variables for a general ALF run
!---------------------------------------------------------------------------------------
&VAR_lattice !! Parameters defining the specific lattice and base model
L1 = 6 ! Length in direction a_1
L2 = 6 ! Length in direction a_2
Lattice_type = "Square" ! Sets a_1 = (1,0), a_2=(0,1), Norb=1, N_coord=2
Model = "Hubbard" ! Sets the Hubbard model, to be specified in &VAR_Hubbard
/
&VAR_Model_Generic !! Common model parameters
Checkerboard = .T. ! Whether checkerboard decomposition is used
Symm = .T. ! Whether symmetrization takes place
N_SUN = 2 ! Number of colors
N_FL = 1 ! Number of flavors
Phi_X = 0.d0 ! Twist along the L_1 direction, in units of the flux quanta
Phi_Y = 0.d0 ! Twist along the L_2 direction, in units of the flux quanta
Bulk = .T. ! Twist as a vector potential (.T.), or at the boundary (.F.)
N_Phi = 0 ! Total number of flux quanta traversing the lattice
Dtau = 0.1d0 ! Thereby Ltrot=Beta/dtau
Beta = 5.d0 ! Inverse temperature
Projector = .F. ! Whether the projective algorithm is used
Theta = 10.d0 ! Projection parameter
/
&VAR_QMC !! Variables for the QMC run
Nwrap = 10 ! Stabilization. Green functions will be computed from
! scratch after each time interval Nwrap*Dtau
NSweep = 20 ! Number of sweeps
NBin = 5 ! Number of bins
Ltau = 1 ! 1 to calculate time-displaced Green functions; 0 otherwise
LOBS_ST = 0 ! Start measurements at time slice LOBS_ST
LOBS_EN = 0 ! End measurements at time slice LOBS_EN
CPU_MAX = 0.05 ! Code stops after CPU_MAX hours, if 0 or not
! specified, the code stops after Nbin bins
Propose_S0 = .F. ! Proposes single spin flip moves with probability exp(-S0)
Global_moves = .F. ! Allows for global moves in space and time
N_Global = 1 ! Number of global moves per sweep
Global_tau_moves = .F. ! Allows for global moves on a single time slice.
N_Global_tau = 1 ! Number of global moves that will be carried out on a
! single time slice
Nt_sequential_start = 0 ! One can combine sequential and global moves on a time slice
Nt_sequential_end = -1 ! The program then carries out sequential local moves in the
! range [Nt_sequential_start, Nt_sequential_end] followed by
! N_Global_tau global moves
/
&VAR_errors !! Variables for analysis programs
n_skip = 1 ! Number of bins that to be skipped.
N_rebin = 1 ! Rebinning
N_Cov = 0 ! If set to 1 covariance computed for non-equal-time
! correlation functions
/
&VAR_TEMP !! Variables for parallel tempering
N_exchange_steps = 6 ! Number of exchange moves #[see Eq.~\eqref{eq:exchangestep}]#
N_Tempering_frequency = 10 ! The frequency in units of sweeps at which the
! exchange moves are carried out
mpi_per_parameter_set = 2 ! Number of mpi-processes per parameter set
Tempering_calc_det = .T. ! Specifies whether the fermion weight has to be taken
! into account while tempering. The default is .true.,
! and it can be set to .F. if the parameters that
! get varied only enter the Ising action S_0
/
&VAR_Max_Stoch !! Variables for Stochastic Maximum entropy
Ngamma = 400 ! Number of Dirac delta-functions for parametrization
Om_st = -10.d0 ! Frequency range lower bound
Om_en = 10.d0 ! Frequency range upper bound
NDis = 2000 ! Number of boxes for histogram
Nbins = 250 ! Number of bins for Monte Carlo
Nsweeps = 70 ! Number of sweeps per bin
NWarm = 20 ! The Nwarm first bins will be ommitted
N_alpha = 14 ! Number of temperatures
alpha_st = 1.d0 ! Smallest inverse temperature increment for inverse
R = 1.2d0 ! temperature (see above)
Channel = "P" ! Options: zero temperature (T0), and finite temperature
! particle (P), particle-hole (PH), or particle-particle (PP)
Checkpoint = .F. ! Whether to produce dump files, allowing the simulation
! to be resumed later on
Tolerance = 0.1d0 ! Data points for which the relative error exceeds the
! tolerance threshold will be omitted.
/
&VAR_Hubbard !! Variables for the specific model
Mz = .T. ! When true, sets the M_z-Hubbard model: Nf=2, N_sun=1, HS field
! couples to the z-component of magnetization; otherwise, HS field
! couples to the density
ham_T = 1.d0 ! Hopping parameter
ham_chem = 0.d0 ! Chemical potential
ham_U = 4.d0 ! Hubbard interaction
ham_T2 = 1.d0 ! For bilayer systems
ham_U2 = 4.d0 ! For bilayer systems
ham_Tperp = 1.d0 ! For bilayer systems
/
&VAR_Hubbard_Plain_Vanilla !! Variables for the specific model
ham_T = 1.d0 ! Hopping parameter
ham_chem = 0.d0 ! Chemical potential
ham_U = 4.d0 ! Hubbard interaction
Dtau = 0.1d0 ! Thereby Ltrot=Beta/dtau
Beta = 5.d0 ! Inverse temperature
Projector = .F. ! Whether the projective algorithm is used
Theta = 10.d0 ! Projection parameter
Symm = .T. ! Whether symmetrization takes place
/
&VAR_tV !! Variables for the t-V class
ham_T = 1.d0 ! Hopping parameter
ham_chem = 0.d0 ! Chemical potential
ham_V = 4.d0 ! Hubbard interaction
ham_T2 = 1.d0 ! For bilayer systems
ham_V2 = 4.d0 ! For bilayer systems
ham_Tperp = 1.d0 ! For bilayer systems
ham_Vperp = 1.d0 ! For bilayer systems
/
&VAR_Kondo !! Variables for the Kondo class
ham_T = 1.d0 ! Hopping parameter
ham_chem = 0.d0 ! Chemical potential
ham_Uc = 0.d0 ! Hubbard interaction on c-orbitals Uc
ham_Uf = 2.d0 ! Hubbard interaction on f-orbials Uf
ham_JK = 2.d0 ! Kondo Coupling J
/
&VAR_LRC !! Variables for the Long Range Coulomb class
ham_T = 1.0 ! Specifies the hopping and chemical potential
ham_T2 = 1.0 ! For bilayer systems
ham_Tperp = 1.0 ! For bilayer systems
ham_chem = 1.0 ! Chemical potential
ham_U = 4.0 ! On-site interaction
ham_alpha = 0.1 ! Coulomb tail magnitude
Percent_change = 0.1 ! Parameter P
/
&VAR_Z2_Matter !! Variables for the Z_2 class
ham_T = 1.0 ! Hopping for fermions
ham_TZ2 = 1.0 ! Hopping for orthogonal fermions
ham_chem = 0.0 ! Chemical potential for fermions
ham_U = 0.0 ! Hubbard for fermions
Ham_J = 1.0 ! Hopping Z2 matter fields
Ham_K = 1.0 ! Plaquette term for gauge fields
Ham_h = 1.0 ! sigma^x-term for matter
Ham_g = 1.0 ! tau^x-term for gauge
Dtau = 0.1d0 ! Thereby Ltrot=Beta/dtau
Beta = 10.d0 ! Inverse temperature
/
! slash terminates namelist statement - DO NOT REMOVE
!=======================================================================================
! Input variables for a general ALF run
!---------------------------------------------------------------------------------------
&VAR_lattice !! Parameters defining the specific lattice and base model
L1 = 28 ! Length in direction a_1
L2 = 1 ! Length in direction a_2
Lattice_type = "Square" ! Sets a_1 = (1,0), a_2=(0,1), Norb=1, N_coord=2
!!!!!! Modifications for Exercise 2
!Model = "Hubbard" ! Sets the Hubbard model, to be specified in &VAR_Hubbard
Model = "Hubbard_Plain_Vanilla" ! Sets (after modified) the t-V model, to be specified in &VAR_t_V
!!!!!!
/
&VAR_Model_Generic !! Common model parameters
Checkerboard = .T. ! Whether checkerboard decomposition is used
Symm = .T. ! Whether symmetrization takes place
N_SUN = 2 ! Number of colors
N_FL = 1 ! Number of flavors
Phi_X = 0.d0 ! Twist along the L_1 direction, in units of the flux quanta
Phi_Y = 0.d0 ! Twist along the L_2 direction, in units of the flux quanta
Bulk = .T. ! Twist as a vector potential (.T.), or at the boundary (.F.)
N_Phi = 0 ! Total number of flux quanta traversing the lattice
Dtau = 0.1d0 ! Thereby Ltrot=Beta/dtau
Beta = 5.d0 ! Inverse temperature
Projector = .F. ! Whether the projective algorithm is used
Theta = 10.d0 ! Projection parameter
/
&VAR_QMC !! Variables for the QMC run
Nwrap = 10 ! Stabilization. Green functions will be computed from
! scratch after each time interval Nwrap*Dtau
NSweep = 20 ! Number of sweeps
NBin = 5 ! Number of bins
Ltau = 1 ! 1 to calculate time-displaced Green functions; 0 otherwise
LOBS_ST = 0 ! Start measurements at time slice LOBS_ST
LOBS_EN = 0 ! End measurements at time slice LOBS_EN
CPU_MAX = 0.05 ! Code stops after CPU_MAX hours, if 0 or not
! specified, the code stops after Nbin bins
Propose_S0 = .F. ! Proposes single spin flip moves with probability exp(-S0)
Global_moves = .F. ! Allows for global moves in space and time
N_Global = 1 ! Number of global moves per sweep
Global_tau_moves = .F. ! Allows for global moves on a single time slice.
N_Global_tau = 1 ! Number of global moves that will be carried out on a
! single time slice
Nt_sequential_start = 0 ! One can combine sequential and global moves on a time slice
Nt_sequential_end = -1 ! The program then carries out sequential local moves in the
! range [Nt_sequential_start, Nt_sequential_end] followed by
! N_Global_tau global moves
/
&VAR_errors !! Variables for analysis programs
n_skip = 1 ! Number of bins that to be skipped.
N_rebin = 1 ! Rebinning
N_Cov = 0 ! If set to 1 covariance computed for non-equal-time
! correlation functions
/
&VAR_TEMP !! Variables for parallel tempering
N_exchange_steps = 6 ! Number of exchange moves #[see Eq.~\eqref{eq:exchangestep}]#
N_Tempering_frequency = 10 ! The frequency in units of sweeps at which the
! exchange moves are carried out
mpi_per_parameter_set = 2 ! Number of mpi-processes per parameter set
Tempering_calc_det = .T. ! Specifies whether the fermion weight has to be taken
! into account while tempering. The default is .true.,
! and it can be set to .F. if the parameters that
! get varied only enter the Ising action S_0
/
&VAR_Max_Stoch !! Variables for Stochastic Maximum entropy
Ngamma = 400 ! Number of Dirac delta-functions for parametrization
Om_st = -10.d0 ! Frequency range lower bound
Om_en = 10.d0 ! Frequency range upper bound
NDis = 2000 ! Number of boxes for histogram
Nbins = 250 ! Number of bins for Monte Carlo
Nsweeps = 70 ! Number of sweeps per bin
NWarm = 20 ! The Nwarm first bins will be ommitted
N_alpha = 14 ! Number of temperatures
alpha_st = 1.d0 ! Smallest inverse temperature increment for inverse
R = 1.2d0 ! temperature (see above)
Channel = "P" ! Options: zero temperature (T0), and finite temperature
! particle (P), particle-hole (PH), or particle-particle (PP)
Checkpoint = .F. ! Whether to produce dump files, allowing the simulation
! to be resumed later on
Tolerance = 0.1d0 ! Data points for which the relative error exceeds the
! tolerance threshold will be omitted.
/
&VAR_Hubbard !! Variables for the specific model
Mz = .T. ! When true, sets the M_z-Hubbard model: Nf=2, N_sun=1, HS field
! couples to the z-component of magnetization; otherwise, HS field
! couples to the density
ham_T = 1.d0 ! Hopping parameter
ham_chem = 0.d0 ! Chemical potential
ham_U = 4.d0 ! Hubbard interaction
ham_T2 = 1.d0 ! For bilayer systems
ham_U2 = 4.d0 ! For bilayer systems
ham_Tperp = 1.d0 ! For bilayer systems
/
!!!!!! Modifications for Exercise 2
!&VAR_Hubbard_Plain_Vanilla !! Variables for the specific model
&VAR_t_V !! Variables for the specific model
ham_T = 1.d0 ! Hopping parameter
ham_chem = 0.d0 ! Chemical potential
!ham_U = 4.d0 ! Hubbard interaction
Ham_Vint = 2.d0 ! Hubbard interaction
!!!!!!
Dtau = 0.1d0 ! Thereby Ltrot=Beta/dtau
Beta = 20.d0 ! Inverse temperature
Projector = .F. ! Whether the projective algorithm is used
Theta = 10.d0 ! Projection parameter
Symm = .T. ! Whether symmetrization takes place
/
&VAR_tV !! Variables for the t-V class
ham_T = 1.d0 ! Hopping parameter
ham_chem = 0.d0 ! Chemical potential
ham_V = 4.d0 ! Hubbard interaction
ham_T2 = 1.d0 ! For bilayer systems
ham_V2 = 4.d0 ! For bilayer systems
ham_Tperp = 1.d0 ! For bilayer systems
ham_Vperp = 1.d0 ! For bilayer systems
/
&VAR_Kondo !! Variables for the Kondo class
ham_T = 1.d0 ! Hopping parameter
ham_chem = 0.d0 ! Chemical potential
ham_Uc = 0.d0 ! Hubbard interaction on c-orbitals Uc
ham_Uf = 2.d0 ! Hubbard interaction on f-orbials Uf
ham_JK = 2.d0 ! Kondo Coupling J
/
&VAR_LRC !! Variables for the Long Range Coulomb class
ham_T = 1.0 ! Specifies the hopping and chemical potential
ham_T2 = 1.0 ! For bilayer systems
ham_Tperp = 1.0 ! For bilayer systems
ham_chem = 1.0 ! Chemical potential
ham_U = 4.0 ! On-site interaction
ham_alpha = 0.1 ! Coulomb tail magnitude
Percent_change = 0.1 ! Parameter P
/
&VAR_Z2_Matter !! Variables for the Z_2 class
ham_T = 1.0 ! Hopping for fermions
ham_TZ2 = 1.0 ! Hopping for orthogonal fermions
ham_chem = 0.0 ! Chemical potential for fermions
ham_U = 0.0 ! Hubbard for fermions
Ham_J = 1.0 ! Hopping Z2 matter fields
Ham_K = 1.0 ! Plaquette term for gauge fields
Ham_h = 1.0 ! sigma^x-term for matter
Ham_g = 1.0 ! tau^x-term for gauge
Dtau = 0.1d0 ! Thereby Ltrot=Beta/dtau
Beta = 10.d0 ! Inverse temperature
/
! slash terminates namelist statement - DO NOT REMOVE
790789
452938
1048
814342
227372
538812
718356
402600
483443
212397
361162
448281
422328
433028
200386
801224
678595
729131
901235
573718
513521
256820
472421
917847
608058
45986
652882
490334
793308
433895
735999
604885
718486
686278
831314
72032
456393
805928
563751
726475
46379
528791
210334
641930
974820
507563
274404
33470
593079
682778
497340
847369
472980
841410
307776
38444
699773
362961
708323
534905
102605
153053
599781
890690
422490
764529
542867
625315
417774
706040
957426
251217
907106
938142
759152
988594
749907
556890
433810
167755
764337
664929
548951
318956
582768
430090
703129
949752
444746
331485
912628
9834
927466
593097
435671
43376
613738
804876
34144
28879
697454
731335
672817
906512
526561
307637
656054
792961
83526
823197
202042
883765
403308
292770
454504
43169
928824
15047
931917
81458
803917
318747
414235
719810
103829
496215
267105
242633
3166
924509
203583
837411
881369
374000
483361
622050
365681
504464
549477
359717
311616
548672
102537
861189
720929
183490
612438
74693
597084
588468
267578
863249
738221
691935
361582
469519
467630
604593
117520
668146
301714
240613