Commit 8edecdf1 by Jefferson Stafusa E. Portela

### Improved but not final Exercise 2 of part 2 (tv model).

parent a98834b5
 !======================================================================================= ! Input variables for a general ALF run !--------------------------------------------------------------------------------------- &VAR_lattice !! Parameters defining the specific lattice and base model L1 = 28 ! Length in direction a_1 L2 = 1 ! Length in direction a_2 Lattice_type = "Square" ! Sets a_1 = (1,0), a_2=(0,1), Norb=1, N_coord=2 !!!!!! Modifications for Exercise 2 !Model = "Hubbard" ! Sets the Hubbard model, to be specified in &VAR_Hubbard Model = "Hubbard_Plain_Vanilla" ! Sets (after modified) the t-V model, to be specified in &VAR_t_V !!!!!! / &VAR_Model_Generic !! Common model parameters Checkerboard = .T. ! Whether checkerboard decomposition is used Symm = .T. ! Whether symmetrization takes place N_SUN = 2 ! Number of colors N_FL = 1 ! Number of flavors Phi_X = 0.d0 ! Twist along the L_1 direction, in units of the flux quanta Phi_Y = 0.d0 ! Twist along the L_2 direction, in units of the flux quanta Bulk = .T. ! Twist as a vector potential (.T.), or at the boundary (.F.) N_Phi = 0 ! Total number of flux quanta traversing the lattice Dtau = 0.1d0 ! Thereby Ltrot=Beta/dtau Beta = 5.d0 ! Inverse temperature Projector = .F. ! Whether the projective algorithm is used Theta = 10.d0 ! Projection parameter / &VAR_QMC !! Variables for the QMC run Nwrap = 10 ! Stabilization. Green functions will be computed from ! scratch after each time interval Nwrap*Dtau NSweep = 20 ! Number of sweeps NBin = 5 ! Number of bins Ltau = 1 ! 1 to calculate time-displaced Green functions; 0 otherwise LOBS_ST = 0 ! Start measurements at time slice LOBS_ST LOBS_EN = 0 ! End measurements at time slice LOBS_EN CPU_MAX = 0.05 ! Code stops after CPU_MAX hours, if 0 or not ! specified, the code stops after Nbin bins Propose_S0 = .F. ! Proposes single spin flip moves with probability exp(-S0) Global_moves = .F. ! Allows for global moves in space and time N_Global = 1 ! Number of global moves per sweep Global_tau_moves = .F. ! Allows for global moves on a single time slice. N_Global_tau = 1 ! Number of global moves that will be carried out on a ! single time slice Nt_sequential_start = 0 ! One can combine sequential and global moves on a time slice Nt_sequential_end = -1 ! The program then carries out sequential local moves in the ! range [Nt_sequential_start, Nt_sequential_end] followed by ! N_Global_tau global moves / &VAR_errors !! Variables for analysis programs n_skip = 1 ! Number of bins that to be skipped. N_rebin = 1 ! Rebinning N_Cov = 0 ! If set to 1 covariance computed for non-equal-time ! correlation functions / &VAR_TEMP !! Variables for parallel tempering N_exchange_steps = 6 ! Number of exchange moves #[see Eq.~\eqref{eq:exchangestep}]# N_Tempering_frequency = 10 ! The frequency in units of sweeps at which the ! exchange moves are carried out mpi_per_parameter_set = 2 ! Number of mpi-processes per parameter set Tempering_calc_det = .T. ! Specifies whether the fermion weight has to be taken ! into account while tempering. The default is .true., ! and it can be set to .F. if the parameters that ! get varied only enter the Ising action S_0 / &VAR_Max_Stoch !! Variables for Stochastic Maximum entropy Ngamma = 400 ! Number of Dirac delta-functions for parametrization Om_st = -10.d0 ! Frequency range lower bound Om_en = 10.d0 ! Frequency range upper bound NDis = 2000 ! Number of boxes for histogram Nbins = 250 ! Number of bins for Monte Carlo Nsweeps = 70 ! Number of sweeps per bin NWarm = 20 ! The Nwarm first bins will be ommitted N_alpha = 14 ! Number of temperatures alpha_st = 1.d0 ! Smallest inverse temperature increment for inverse R = 1.2d0 ! temperature (see above) Channel = "P" ! Options: zero temperature (T0), and finite temperature ! particle (P), particle-hole (PH), or particle-particle (PP) Checkpoint = .F. ! Whether to produce dump files, allowing the simulation ! to be resumed later on Tolerance = 0.1d0 ! Data points for which the relative error exceeds the ! tolerance threshold will be omitted. / &VAR_Hubbard !! Variables for the specific model Mz = .T. ! When true, sets the M_z-Hubbard model: Nf=2, N_sun=1, HS field ! couples to the z-component of magnetization; otherwise, HS field ! couples to the density ham_T = 1.d0 ! Hopping parameter ham_chem = 0.d0 ! Chemical potential ham_U = 4.d0 ! Hubbard interaction ham_T2 = 1.d0 ! For bilayer systems ham_U2 = 4.d0 ! For bilayer systems ham_Tperp = 1.d0 ! For bilayer systems / !!!!!! Modifications for Exercise 2 !&VAR_Hubbard_Plain_Vanilla !! Variables for the specific model &VAR_t_V !! Variables for the specific model ham_T = 1.d0 ! Hopping parameter ham_chem = 0.d0 ! Chemical potential !ham_U = 4.d0 ! Hubbard interaction Ham_Vint = 2.5d0 ! Hubbard interaction !!!!!! Dtau = 0.1d0 ! Thereby Ltrot=Beta/dtau Beta = 20.d0 ! Inverse temperature Projector = .F. ! Whether the projective algorithm is used Theta = 10.d0 ! Projection parameter Symm = .F. ! Whether symmetrization takes place / &VAR_tV !! Variables for the t-V class ham_T = 1.d0 ! Hopping parameter ham_chem = 0.d0 ! Chemical potential ham_V = 4.d0 ! Hubbard interaction ham_T2 = 1.d0 ! For bilayer systems ham_V2 = 4.d0 ! For bilayer systems ham_Tperp = 1.d0 ! For bilayer systems ham_Vperp = 1.d0 ! For bilayer systems / &VAR_Kondo !! Variables for the Kondo class ham_T = 1.d0 ! Hopping parameter ham_chem = 0.d0 ! Chemical potential ham_Uc = 0.d0 ! Hubbard interaction on c-orbitals Uc ham_Uf = 2.d0 ! Hubbard interaction on f-orbials Uf ham_JK = 2.d0 ! Kondo Coupling J / &VAR_LRC !! Variables for the Long Range Coulomb class ham_T = 1.0 ! Specifies the hopping and chemical potential ham_T2 = 1.0 ! For bilayer systems ham_Tperp = 1.0 ! For bilayer systems ham_chem = 1.0 ! Chemical potential ham_U = 4.0 ! On-site interaction ham_alpha = 0.1 ! Coulomb tail magnitude Percent_change = 0.1 ! Parameter P / &VAR_Z2_Matter !! Variables for the Z_2 class ham_T = 1.0 ! Hopping for fermions ham_TZ2 = 1.0 ! Hopping for orthogonal fermions ham_chem = 0.0 ! Chemical potential for fermions ham_U = 0.0 ! Hubbard for fermions Ham_J = 1.0 ! Hopping Z2 matter fields Ham_K = 1.0 ! Plaquette term for gauge fields Ham_h = 1.0 ! sigma^x-term for matter Ham_g = 1.0 ! tau^x-term for gauge Dtau = 0.1d0 ! Thereby Ltrot=Beta/dtau Beta = 10.d0 ! Inverse temperature / ! slash terminates namelist statement - DO NOT REMOVE
 !======================================================================================= ! Input variables for a general ALF run !--------------------------------------------------------------------------------------- &VAR_lattice !! Parameters defining the specific lattice and base model L1 = 6 ! Length in direction a_1 L2 = 6 ! Length in direction a_2 Lattice_type = "Square" ! Sets a_1 = (1,0), a_2=(0,1), Norb=1, N_coord=2 Model = "Hubbard" ! Sets the Hubbard model, to be specified in &VAR_Hubbard / &VAR_Model_Generic !! Common model parameters Checkerboard = .T. ! Whether checkerboard decomposition is used Symm = .T. ! Whether symmetrization takes place N_SUN = 2 ! Number of colors N_FL = 1 ! Number of flavors Phi_X = 0.d0 ! Twist along the L_1 direction, in units of the flux quanta Phi_Y = 0.d0 ! Twist along the L_2 direction, in units of the flux quanta Bulk = .T. ! Twist as a vector potential (.T.), or at the boundary (.F.) N_Phi = 0 ! Total number of flux quanta traversing the lattice Dtau = 0.1d0 ! Thereby Ltrot=Beta/dtau Beta = 5.d0 ! Inverse temperature Projector = .F. ! Whether the projective algorithm is used Theta = 10.d0 ! Projection parameter / &VAR_QMC !! Variables for the QMC run Nwrap = 10 ! Stabilization. Green functions will be computed from ! scratch after each time interval Nwrap*Dtau NSweep = 20 ! Number of sweeps NBin = 5 ! Number of bins Ltau = 1 ! 1 to calculate time-displaced Green functions; 0 otherwise LOBS_ST = 0 ! Start measurements at time slice LOBS_ST LOBS_EN = 0 ! End measurements at time slice LOBS_EN CPU_MAX = 0.05 ! Code stops after CPU_MAX hours, if 0 or not ! specified, the code stops after Nbin bins Propose_S0 = .F. ! Proposes single spin flip moves with probability exp(-S0) Global_moves = .F. ! Allows for global moves in space and time N_Global = 1 ! Number of global moves per sweep Global_tau_moves = .F. ! Allows for global moves on a single time slice. N_Global_tau = 1 ! Number of global moves that will be carried out on a ! single time slice Nt_sequential_start = 0 ! One can combine sequential and global moves on a time slice Nt_sequential_end = -1 ! The program then carries out sequential local moves in the ! range [Nt_sequential_start, Nt_sequential_end] followed by ! N_Global_tau global moves / &VAR_errors !! Variables for analysis programs n_skip = 1 ! Number of bins that to be skipped. N_rebin = 1 ! Rebinning N_Cov = 0 ! If set to 1 covariance computed for non-equal-time ! correlation functions / &VAR_TEMP !! Variables for parallel tempering N_exchange_steps = 6 ! Number of exchange moves #[see Eq.~\eqref{eq:exchangestep}]# N_Tempering_frequency = 10 ! The frequency in units of sweeps at which the ! exchange moves are carried out mpi_per_parameter_set = 2 ! Number of mpi-processes per parameter set Tempering_calc_det = .T. ! Specifies whether the fermion weight has to be taken ! into account while tempering. The default is .true., ! and it can be set to .F. if the parameters that ! get varied only enter the Ising action S_0 / &VAR_Max_Stoch !! Variables for Stochastic Maximum entropy Ngamma = 400 ! Number of Dirac delta-functions for parametrization Om_st = -10.d0 ! Frequency range lower bound Om_en = 10.d0 ! Frequency range upper bound NDis = 2000 ! Number of boxes for histogram Nbins = 250 ! Number of bins for Monte Carlo Nsweeps = 70 ! Number of sweeps per bin NWarm = 20 ! The Nwarm first bins will be ommitted N_alpha = 14 ! Number of temperatures alpha_st = 1.d0 ! Smallest inverse temperature increment for inverse R = 1.2d0 ! temperature (see above) Channel = "P" ! Options: zero temperature (T0), and finite temperature ! particle (P), particle-hole (PH), or particle-particle (PP) Checkpoint = .F. ! Whether to produce dump files, allowing the simulation ! to be resumed later on Tolerance = 0.1d0 ! Data points for which the relative error exceeds the ! tolerance threshold will be omitted. / &VAR_Hubbard !! Variables for the specific model Mz = .T. ! When true, sets the M_z-Hubbard model: Nf=2, N_sun=1, HS field ! couples to the z-component of magnetization; otherwise, HS field ! couples to the density ham_T = 1.d0 ! Hopping parameter ham_chem = 0.d0 ! Chemical potential ham_U = 4.d0 ! Hubbard interaction ham_T2 = 1.d0 ! For bilayer systems ham_U2 = 4.d0 ! For bilayer systems ham_Tperp = 1.d0 ! For bilayer systems / &VAR_Hubbard_Plain_Vanilla !! Variables for the specific model ham_T = 1.d0 ! Hopping parameter ham_chem = 0.d0 ! Chemical potential ham_U = 4.d0 ! Hubbard interaction Dtau = 0.1d0 ! Thereby Ltrot=Beta/dtau Beta = 5.d0 ! Inverse temperature Projector = .F. ! Whether the projective algorithm is used Theta = 10.d0 ! Projection parameter Symm = .T. ! Whether symmetrization takes place / &VAR_tV !! Variables for the t-V class ham_T = 1.d0 ! Hopping parameter ham_chem = 0.d0 ! Chemical potential ham_V = 4.d0 ! Hubbard interaction ham_T2 = 1.d0 ! For bilayer systems ham_V2 = 4.d0 ! For bilayer systems ham_Tperp = 1.d0 ! For bilayer systems ham_Vperp = 1.d0 ! For bilayer systems / &VAR_Kondo !! Variables for the Kondo class ham_T = 1.d0 ! Hopping parameter ham_chem = 0.d0 ! Chemical potential ham_Uc = 0.d0 ! Hubbard interaction on c-orbitals Uc ham_Uf = 2.d0 ! Hubbard interaction on f-orbials Uf ham_JK = 2.d0 ! Kondo Coupling J / &VAR_LRC !! Variables for the Long Range Coulomb class ham_T = 1.0 ! Specifies the hopping and chemical potential ham_T2 = 1.0 ! For bilayer systems ham_Tperp = 1.0 ! For bilayer systems ham_chem = 1.0 ! Chemical potential ham_U = 4.0 ! On-site interaction ham_alpha = 0.1 ! Coulomb tail magnitude Percent_change = 0.1 ! Parameter P / &VAR_Z2_Matter !! Variables for the Z_2 class ham_T = 1.0 ! Hopping for fermions ham_TZ2 = 1.0 ! Hopping for orthogonal fermions ham_chem = 0.0 ! Chemical potential for fermions ham_U = 0.0 ! Hubbard for fermions Ham_J = 1.0 ! Hopping Z2 matter fields Ham_K = 1.0 ! Plaquette term for gauge fields Ham_h = 1.0 ! sigma^x-term for matter Ham_g = 1.0 ! tau^x-term for gauge Dtau = 0.1d0 ! Thereby Ltrot=Beta/dtau Beta = 10.d0 ! Inverse temperature / ! slash terminates namelist statement - DO NOT REMOVE
 !======================================================================================= ! Input variables for a general ALF run !--------------------------------------------------------------------------------------- &VAR_lattice !! Parameters defining the specific lattice and base model L1 = 28 ! Length in direction a_1 L2 = 1 ! Length in direction a_2 Lattice_type = "Square" ! Sets a_1 = (1,0), a_2=(0,1), Norb=1, N_coord=2 !!!!!! Modifications for Exercise 2 !Model = "Hubbard" ! Sets the Hubbard model, to be specified in &VAR_Hubbard Model = "Hubbard_Plain_Vanilla" ! Sets (after modified) the t-V model, to be specified in &VAR_t_V !!!!!! / &VAR_Model_Generic !! Common model parameters Checkerboard = .T. ! Whether checkerboard decomposition is used Symm = .T. ! Whether symmetrization takes place N_SUN = 2 ! Number of colors N_FL = 1 ! Number of flavors Phi_X = 0.d0 ! Twist along the L_1 direction, in units of the flux quanta Phi_Y = 0.d0 ! Twist along the L_2 direction, in units of the flux quanta Bulk = .T. ! Twist as a vector potential (.T.), or at the boundary (.F.) N_Phi = 0 ! Total number of flux quanta traversing the lattice Dtau = 0.1d0 ! Thereby Ltrot=Beta/dtau Beta = 5.d0 ! Inverse temperature Projector = .F. ! Whether the projective algorithm is used Theta = 10.d0 ! Projection parameter / &VAR_QMC !! Variables for the QMC run Nwrap = 10 ! Stabilization. Green functions will be computed from ! scratch after each time interval Nwrap*Dtau NSweep = 20 ! Number of sweeps NBin = 5 ! Number of bins Ltau = 1 ! 1 to calculate time-displaced Green functions; 0 otherwise LOBS_ST = 0 ! Start measurements at time slice LOBS_ST LOBS_EN = 0 ! End measurements at time slice LOBS_EN CPU_MAX = 0.05 ! Code stops after CPU_MAX hours, if 0 or not ! specified, the code stops after Nbin bins Propose_S0 = .F. ! Proposes single spin flip moves with probability exp(-S0) Global_moves = .F. ! Allows for global moves in space and time N_Global = 1 ! Number of global moves per sweep Global_tau_moves = .F. ! Allows for global moves on a single time slice. N_Global_tau = 1 ! Number of global moves that will be carried out on a ! single time slice Nt_sequential_start = 0 ! One can combine sequential and global moves on a time slice Nt_sequential_end = -1 ! The program then carries out sequential local moves in the ! range [Nt_sequential_start, Nt_sequential_end] followed by ! N_Global_tau global moves / &VAR_errors !! Variables for analysis programs n_skip = 1 ! Number of bins that to be skipped. N_rebin = 1 ! Rebinning N_Cov = 0 ! If set to 1 covariance computed for non-equal-time ! correlation functions / &VAR_TEMP !! Variables for parallel tempering N_exchange_steps = 6 ! Number of exchange moves #[see Eq.~\eqref{eq:exchangestep}]# N_Tempering_frequency = 10 ! The frequency in units of sweeps at which the ! exchange moves are carried out mpi_per_parameter_set = 2 ! Number of mpi-processes per parameter set Tempering_calc_det = .T. ! Specifies whether the fermion weight has to be taken ! into account while tempering. The default is .true., ! and it can be set to .F. if the parameters that ! get varied only enter the Ising action S_0 / &VAR_Max_Stoch !! Variables for Stochastic Maximum entropy Ngamma = 400 ! Number of Dirac delta-functions for parametrization Om_st = -10.d0 ! Frequency range lower bound Om_en = 10.d0 ! Frequency range upper bound NDis = 2000 ! Number of boxes for histogram Nbins = 250 ! Number of bins for Monte Carlo Nsweeps = 70 ! Number of sweeps per bin NWarm = 20 ! The Nwarm first bins will be ommitted N_alpha = 14 ! Number of temperatures alpha_st = 1.d0 ! Smallest inverse temperature increment for inverse R = 1.2d0 ! temperature (see above) Channel = "P" ! Options: zero temperature (T0), and finite temperature ! particle (P), particle-hole (PH), or particle-particle (PP) Checkpoint = .F. ! Whether to produce dump files, allowing the simulation ! to be resumed later on Tolerance = 0.1d0 ! Data points for which the relative error exceeds the ! tolerance threshold will be omitted. / &VAR_Hubbard !! Variables for the specific model Mz = .T. ! When true, sets the M_z-Hubbard model: Nf=2, N_sun=1, HS field ! couples to the z-component of magnetization; otherwise, HS field ! couples to the density ham_T = 1.d0 ! Hopping parameter ham_chem = 0.d0 ! Chemical potential ham_U = 4.d0 ! Hubbard interaction ham_T2 = 1.d0 ! For bilayer systems ham_U2 = 4.d0 ! For bilayer systems ham_Tperp = 1.d0 ! For bilayer systems / !!!!!! Modifications for Exercise 2 !&VAR_Hubbard_Plain_Vanilla !! Variables for the specific model &VAR_t_V !! Variables for the specific model ham_T = 1.d0 ! Hopping parameter ham_chem = 0.d0 ! Chemical potential !ham_U = 4.d0 ! Hubbard interaction Ham_Vint = 2.d0 ! Hubbard interaction !!!!!! Dtau = 0.1d0 ! Thereby Ltrot=Beta/dtau Beta = 20.d0 ! Inverse temperature Projector = .F. ! Whether the projective algorithm is used Theta = 10.d0 ! Projection parameter Symm = .T. ! Whether symmetrization takes place / &VAR_tV !! Variables for the t-V class ham_T = 1.d0 ! Hopping parameter ham_chem = 0.d0 ! Chemical potential ham_V = 4.d0 ! Hubbard interaction ham_T2 = 1.d0 ! For bilayer systems ham_V2 = 4.d0 ! For bilayer systems ham_Tperp = 1.d0 ! For bilayer systems ham_Vperp = 1.d0 ! For bilayer systems / &VAR_Kondo !! Variables for the Kondo class ham_T = 1.d0 ! Hopping parameter ham_chem = 0.d0 ! Chemical potential ham_Uc = 0.d0 ! Hubbard interaction on c-orbitals Uc ham_Uf = 2.d0 ! Hubbard interaction on f-orbials Uf ham_JK = 2.d0 ! Kondo Coupling J / &VAR_LRC !! Variables for the Long Range Coulomb class ham_T = 1.0 ! Specifies the hopping and chemical potential ham_T2 = 1.0 ! For bilayer systems ham_Tperp = 1.0 ! For bilayer systems ham_chem = 1.0 ! Chemical potential ham_U = 4.0 ! On-site interaction ham_alpha = 0.1 ! Coulomb tail magnitude Percent_change = 0.1 ! Parameter P / &VAR_Z2_Matter !! Variables for the Z_2 class ham_T = 1.0 ! Hopping for fermions ham_TZ2 = 1.0 ! Hopping for orthogonal fermions ham_chem = 0.0 ! Chemical potential for fermions ham_U = 0.0 ! Hubbard for fermions Ham_J = 1.0 ! Hopping Z2 matter fields Ham_K = 1.0 ! Plaquette term for gauge fields Ham_h = 1.0 ! sigma^x-term for matter Ham_g = 1.0 ! tau^x-term for gauge Dtau = 0.1d0 ! Thereby Ltrot=Beta/dtau Beta = 10.d0 ! Inverse temperature / ! slash terminates namelist statement - DO NOT REMOVE
 790789 452938 1048 814342 227372 538812 718356 402600 483443 212397 361162 448281 422328 433028 200386 801224 678595 729131 901235 573718 513521 256820 472421 917847 608058 45986 652882 490334 793308 433895 735999 604885 718486 686278 831314 72032 456393 805928 563751 726475 46379 528791 210334 641930 974820 507563 274404 33470 593079 682778 497340 847369 472980 841410 307776 38444 699773 362961 708323 534905 102605 153053 599781 890690 422490 764529 542867 625315 417774 706040 957426 251217 907106 938142 759152 988594 749907 556890 433810 167755 764337 664929 548951 318956 582768 430090 703129 949752 444746 331485 912628 9834 927466 593097 435671 43376 613738 804876 34144 28879 697454 731335 672817 906512 526561 307637 656054 792961 83526 823197 202042 883765 403308 292770 454504 43169 928824 15047 931917 81458 803917 318747 414235 719810 103829 496215 267105 242633 3166 924509 203583 837411 881369 374000 483361 622050 365681 504464 549477 359717 311616 548672 102537 861189 720929 183490 612438 74693 597084 588468 267578 863249 738221 691935 361582 469519 467630 604593 117520 668146 301714 240613